Algebra II 7th May 2012

Instructions. Questions carry ten marks each.

- 1. Let V be a finitely generated vector space over a field F. Prove that any two bases of V must have the same cardinality.
- 2. Let V be a vector space of dimension n over a field F. Show that the set consisting of ordered bases of V is in one-one correspondence with invertible $n \times n$ matrices with entries from F. Using this (or otherwise) find the number of $n \times n$ matrices with determinant 1 having entries from a finite field F_q of cardinality q.
- 3. Let W be a subspace of a vector space V. Prove that W = V if and only if every basis of V contains at least one element of W.
- 4. Define normal matrices. Prove $\ker(A) = (\operatorname{Im}(A))^{\perp}$ for any normal matrix A.
- 5. For a square matrix A with complex entries, prove that $I + AA^*$ is an invertible matrix.

(Hint: Prove that AA^* can not have -1 as an eigen value)